
CS 1112 Introduction to 
Computing Using MATLAB

Instructor: Dominic Diaz

Website: 
https://www.cs.cornell.edu/courses/cs11
12/2022fa/

Today: More for loops and while loops

https://www.cs.cornell.edu/courses/cs1112/2022fa/
https://www.cs.cornell.edu/courses/cs1112/2022fa/


Agenda and announcements

● Last time
○ for loops

● This time
○ More for loops and while loops

● Announcements
○ Project 2 will be released Friday or Saturday (due 9/19)

■ Partner matching survey for P2 is posted (only submit if 
you need a partner)

○ We do not use break or continue in this course
○ Come to office/consulting hours to get help!  Or sign up for 

tutoring via CMS (Sunday-Tuesday).  You want to have a firm 
foundation now in order to build on it.



Example: Monte Carlo approximation of 𝜋
Throw N darts uniformly on square dart board with an inscribed circle. 
What is the probability of landing in circle, Pin?

L/2
L

Monte Carlo method: Approximate a 
quantity by relating it to a probability that 
can be estimated using simulations



Probability 101

What is the probability that Dominic walks in to lecture listening to Bad 
Bunny?

● Dominic walked into lecture 6 different days
● Was listening to Bad Bunny while walking in 2 different days
● I estimate PlistenBadBunny = 2/6 = 1/3

Probability of an event E = 
Number of times E happened in the past

Number of trials



Estimating 𝜋
Throw N darts uniformly on square dart board with inscribed circle. 
What is the probability of landing in circle, Pin?

L/2
L

Pin =     NinCircle      /    Ntotal

Pin =     Areacircle   /    Areasquare

Pin =    ( 𝜋(L/2)2 ) /     L2                 = 𝜋/4

                    𝜋   ≅   4 NinCircle / Ntotal



Pseudocode

For N trials 

Throw a dart

If it lands in the circle

Add 1 to total # of hits

Pi = 4*hits/N

Now we need to convert 
this into MATLAB code! 
Let’s do this using 
top-down design!



Monte carlo approximation of 𝜋 using a dart board

N = 10000;     L = 1;    hits = 0;

for k = 1:N

end

end

piCalc = 4*hits/N;

Pseudocode: 

For N trials 
    Throw a dart
    If it lands in the circle
        Add 1 to total # of hits

Pi = 4*hits/N



Monte carlo approximation of 𝜋 using a dart board

N = 10000;     L = 1;    hits = 0;

for k = 1:N

% throw kth dart

% count if it is in the circle

end

end

piCalc = 4*hits/N;

Pseudocode: 

For N trials 
    Throw a dart
    If it lands in the circle
        Add 1 to total # of hits

Pi = 4*hits/N



Monte carlo approximation of 𝜋 using a dart board

N = 10000;     L = 1;    hits = 0;

for k = 1:N

% throw kth dart

x = rand()*L - L/2;

y = rand()*L - L/2;

% count if it is in the circle

if sqrt(x^2 + y^2) <= L/2

__________________

end

end

piCalc = 4*hits/N;

Pseudocode: 

For N trials 
    Throw a dart
    If it lands in the circle
        Add 1 to total # of hits

Pi = 4*hits/N



Monte carlo approximation of 𝜋 using a dart board

N = 10000;     L = 1;    hits = 0;

for k = 1:N

% throw kth dart

x = rand()*L - L/2;

y = rand()*L - L/2;

% count if it is in the circle

if sqrt(x^2 + y^2) <= L/2

hits = hits + 1;

end

end

piCalc = 4*hits/N;

Pseudocode: 

For N trials 
    Throw a dart
    If it lands in the circle
        Add 1 to total # of hits

Pi = 4*hits/N



Another way to approximate 𝜋
Consider n-sided regular inscribed and 
circumscribed polygons (about the unit 
circle).

What do you notice as the number of 
sides, n, increases?

The areas of the polygons approach the 
area of the circle!

Inscribed polygon area: 

Circumscribed polygon area: 



Another way to approximate 𝜋

Goal: Find the smallest n such that An and Bn converge.

Calculate triangle case (n = 3 and calculate An and Bn)
Repeat until difference between An and Bn is small 

Increase n
Calculate An and Bn for current n
diff = An-Bn

Display the final approximation

This is an example of 
indefinite iteration - when a 
set of instructions are 
repeated until a condition 
becomes false. 



Another way to approximate 𝜋

Goal: Find the smallest n such that An and Bn converge.

Calculate triangle case (n = 3 and calculate An and Bn)
while | An-Bn | > tolerance

Increase n
Calculate An and Bn for current n
diff = An-Bn

Display the final approximation



% Approximate pi using indefinite iteration (simplified from Eg2_2.m)

tol = input('Enter the error tolerance: ');

% The triangle case
n = 3;
A_n = (n/2)*sin(2*pi/n);
B_n = n*tan(pi/n);
Error = B_n - A_n;

% Repeat until error less than or equal to tolerance
while __________________________

n = n + 1;
A_n = (n/2)*sin(2*pi/n);
B_n = n*tan(pi/n);
Error = B_n - A_n;

end

% Display the final approximation



% Approximate pi using indefinite iteration (simplified from Eg2_2.m)

tol = input('Enter the error tolerance: ');

% The triangle case
n = 3;
A_n = (n/2)*sin(2*pi/n);
B_n = n*tan(pi/n);
Error = B_n - A_n;

% Repeat until error less than or equal to tolerance
while Error > tol

n = n + 1;
A_n = (n/2)*sin(2*pi/n);
B_n = n*tan(pi/n);
Error = B_n - A_n;

end

% Display the final approximation



Iteration caps

While loops run until some condition stops being true. Sometimes this 
takes makes the code run forever though.

● In some cases, it is undesirable to let the program keep 
computing something indefinitely. 
○ For example, “I need to submit by 11 PM; give me your best 

answer right now!”
○ Solution: impose a maximum number of iterations (number of 

times the statements nested inside the loop are executed)



% Approximate pi using indefinite iteration (Eg2_2.m)

tol = input('Enter the error tolerance: ');
nMax = input('Enter the iteration bound: ');

% The triangle case
n = 3;
A_n = (n/2)*sin(2*pi/n);
B_n = n*tan(pi/n);
Error = B_n - A_n;

% Repeat until small error or max num of iters
while Error > tol _____________

n = n + 1;
A_n = (n/2)*sin(2*pi/n);
B_n = n*tan(pi/n);
Error = B_n - A_n;

end

% Display the final approximation



% Approximate pi using indefinite iteration (Eg2_2.m)

tol = input('Enter the error tolerance: ');
nMax = input('Enter the iteration bound: ');

% The triangle case
n = 3;
A_n = (n/2)*sin(2*pi/n);
B_n = n*tan(pi/n);
Error = B_n - A_n;

% Repeat until error is small or we meet the max num of iters
while Error > tol && n < nMax

n = n + 1;
A_n = (n/2)*sin(2*pi/n);
B_n = n*tan(pi/n);
Error = B_n - A_n;

end

% Display the final approximation



For loops versus while loops 

Do something n times (or a fixed 
number of times)

for [var] = [start]:[step]:[end]

[code executed multiple times]

end

Do something until a condition stops 
being true

while [continueCriteria]

[code executed multiple times]

end 

n = 10;

for k = 1:1:n

disp(k);

end

k = 1; n = 10;

while k <= n

disp(k);

k = k + 1;

end

These two 
codes do the 
same thing!


