CS 1112 Introduction to
Computing Using MATLAB

Instructor: Dominic Diaz

Website:
https://www.cs.cornell.edu/courses/cs11

12/2022fa/

Today: More for loops and while loops

https://www.cs.cornell.edu/courses/cs1112/2022fa/
https://www.cs.cornell.edu/courses/cs1112/2022fa/

Agenda and announcements

e Lasttime
o for loops
e This time
o More for loops and while loops
e Announcements
o Project 2 will be released Friday or Saturday (due 9/19)
m Partner matching survey for P2 is posted (only submit if
you need a partner)
o We do not use break or continue in this course
o Come to office/consulting hours to get help! Or sign up for
tutoring via CMS (Sunday-Tuesday). You want to have a firm
foundation now in order to build on it.

Example: Monte Carlo approximation of &

Throw N darts uniformly on square dart board with an inscribed circle.
What is the probability of landing in circle, P, ?

A

Monte Carlo method: Approximate a
quantity by relating it to a probability that
can be estimated using simulations

Probability 101

What is the probability that Dominic walks in to lecture listening to Bad
Bunny?

e Dominic walked into lecture 6 different days
e \Was listening to Bad Bunny while walking in 2 different days
e |estimate P =2/6 =1/3

listenBadBunny

Number of times E happened in the past

Probability of an event E =
Number of trials

Estimating 7

Throw N darts uniformly on square dart board with inscribed circle.
What is the probability of landing in circle, P, ?

{ P = N / N

inCircle total

P. = Area / Area

in circle square

P = (x(L/2?2)/ L2 = /4

in

x = 4N I'N

inCircle total

Pseudocode

For N trials
Throw a dart
If it lands in the circle

Add 1 to total # of hits

Pi = 4*hits/N

Now we need to convert
this into MATLAB code!
Let’s do this using
top-down design!

Monte carlo approximation of & using a dart board

N = 10000; L = 1; hits = 0;
for k = 1:N
Pseudocode:
For N trials
Throw a dart
If it lands in the circle
Add 1 to total # of hits
Pi = 4*hits/N
end
end

piCalc = 4*hits/N;

Monte carlo approximation of & using a dart board

N = 10000; L = 1; hits = 0;
for k = 1:N
% throw kth dart
Pseudocode:
For N ftrials
Throw a dart
% count if it is in the circle If it lands in the circle

Add 1 to total # of hits

Pi = 4*hits/N

end
end
piCalc = 4*hits/N;

Monte carlo approximation of & using a dart board

N = 10000; L = 1; hits = 0;
for k = 1:N
% throw kth dart
X = rand()*L - L/2; Pseudocode:
y = rand()*L - L/2; Fomr;cvafdart
% count if it is in the circle If it lands in the circle

. 'F £ A9 Ay L/Z Add 1 to total # of hits
1 sgr X + <=
: (y) Pi = 4*hits/N

end
end
piCalc = 4*hits/N;

Monte carlo approximation of & using a dart board

N = 10000; L = 1; hits = 0;
for k = 1:N
% throw kth dart
X = rand()*L - L/2; Pseudocode:
y = rand()*L - L/2; Fomr;cvafdart
% count if it is in the circle If it lands in the circle

. Add 1 to total # of hits
if sgrt(x”2 + y*2) <= L/2

hits = hits + 1;
end

Pi = 4*hits/N

end
piCalc = 4*hits/N;

Another way to approximate =z

Consider n-sided regular inscribed and
circumscribed polygons (about the unit
circle). N

What do you notice as the number of

sides, n, increases? / \

The areas of the polygons approach the
area of the circle!

Inscribed polygon area: An = % sin (2%)
Circumscribed polygon area: Bn — ntan (E)
n

Another way to approximate =z

A, = %sin(%ﬂ) B, =ntan(Z)
Goal: Find the smallest n such that A and B_ converge.

Calculate triangle case (n = 3 and calculate A_and B)
Repeat until difference between A _and B _is small

Increase n
This is an example of
Calculate A_and B_ for current n indefinite iteration - when a
rr set of instructions are
diff = An'Bn repeated until a condition

Display the final approximation becomes false.

Another way to approximate =z

A, = %sin(%ﬂ) B, =ntan(Z)
Goal: Find the smallest n such that A and B_ converge.

Calculate triangle case (n = 3 and calculate A_and B)
while [A -B_| > tolerance

Increase n

Calculate A_and B_ for current n

diff =A -B_
Display the final approximation

% Approximate pi using indefinite iteration (simplified from Eg2 2.m)
tol = input('Enter the error tolerance: ');

% The triangle case

n = 3;
A n = (n/2)*sin(2*pi/n);
B n = n*tan(pi/n);

Error = B n - A n;

% Repeat until error less than or equal to tolerance
while

n=n+1;

A n = (n/2)*sin(2*pi/n);

B n = n*tan(pi/n);

Error = B n - A n;

end

% Display the final approximation

% Approximate pi using indefinite iteration (simplified from Eg2 2.m)
tol = input('Enter the error tolerance: ');

% The triangle case

n = 3;
A n = (n/2)*sin(2*pi/n);
B n = n*tan(pi/n);

Error = B n - A n;

% Repeat until error less than or equal to tolerance
while Error > tol

n=n+1;

A n = (n/2)*sin(2*pi/n);

B n = n*tan(pi/n);

Error = B n - A n;
end

% Display the final approximation

Iteration caps

While loops run until some condition stops being true. Sometimes this
takes makes the code run forever though.

e |In some cases, it is undesirable to let the program keep
computing something indefinitely.
o For example, “I need to submit by 11 PM; give me your best

answer right now!”
o Solution: impose a maximum number of iterations (number of

times the statements nested inside the loop are executed)

% Approximate pi using indefinite iteration (Eg2 2.m)

tol = input('Enter the error tolerance: ');
nMax = input('Enter the iteration bound: ');

triangle case

/2)*sin(2*pi/n);
tan(pi/n);
B n - An;

* 3

% Repeat until small error or max num of iters
while Error > tol
n=n+1,;
A n = (n/2)*sin(2*pi/n);
B n = n*tan(pi/n);
Error = B n - A n;
end

% Display the final approximation

% Approximate pi using indefinite iteration (Eg2 2.m)

tol = input('Enter the error tolerance: ');
nMax = input('Enter the iteration bound: ');

triangle case

(n/2)*51n(2*p1/n),
_n = n*tan(pi/n);
rror = B n - A n;

% Repeat until error is small or we meet the max num of iters
while Error > tol & & n < nMax

n=n+1,;

A n = (n/2)*sin(2*pi/n);

B n = n*tan(pi/n);

Error = B n - A n;
end

% Display the final approximation

Do something n times (or a fixed

For loops versus while loops

number of times)

for [var] = [start]:[step]:[end]
[code executed multiple times]

end

for k = 1:1:n

end

10;

disp(k);

Do something until a condition stops
being true

while [continueCriteria]
[code executed multiple times]

end

These two

codes do the

same thing!

k =1; n = 10;
while k <= n
disp(k);

k = k + 1;
end

